

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	django-cities-light 3.2.0 documentation

 [image: https://secure.travis-ci.org/yourlabs/django-cities-light.png?branch=master]
 [http://travis-ci.org/yourlabs/django-cities-light][image: https://pypip.in/d/django-cities-light/badge.png]
 [https://crate.io/packages/django-cities-light][image: https://pypip.in/v/django-cities-light/badge.png]
 [https://crate.io/packages/django-cities-light][image: https://codecov.io/github/yourlabs/django-cities-light/coverage.svg?branch=stable/3.x.x]
 [https://codecov.io/github/yourlabs/django-cities-light?branch=stable/3.x.x]
django-cities-light – Simple django-cities alternative

This add-on provides models and commands to import country, region/state, and
city data in your database.

The data is pulled from GeoNames [http://www.geonames.org/] and contains cities, regions/states and countries.

Spatial query support is not required by this application.

This application is very simple and is useful if you want to make a simple
address book for example. If you intend to build a fully featured spatial
database, you should use
django-cities [https://github.com/coderholic/django-cities].

Requirements:

	Python 2.7 or 3.3,

	Django >= 1.7

	MySQL or PostgreSQL or SQLite.

Yes, for some reason, code that used to work on MySQL (not without pain xD)
does not work anymore. So we’re now using django.db.transaction.atomic which
comes from Django 1.6 just to support MySQL quacks.

Upgrade

See CHANGELOG.

Installation

Install django-cities-light:

pip install django-cities-light

Or the development version:

pip install -e git+git@github.com:yourlabs/django-cities-light.git#egg=cities_light

Add cities_light to your INSTALLED_APPS.

Configure filters to exclude data you don’t want, ie.:

CITIES_LIGHT_TRANSLATION_LANGUAGES = ['fr', 'en']
CITIES_LIGHT_INCLUDE_COUNTRIES = ['FR']
CITIES_LIGHT_INCLUDE_CITY_TYPES = ['PPL', 'PPLA', 'PPLA2', 'PPLA3', 'PPLA4', 'PPLC', 'PPLF', 'PPLG', 'PPLL', 'PPLR', 'PPLS', 'STLMT',]

Now, run migrations, it will only create tables for models that are not
disabled:

./manage.py migrate

Data update

Finally, populate your database with command:

./manage.py cities_light

This command is well documented, consult the help with:

./manage.py help cities_light

Resources

You could subscribe to the mailing list ask questions or just be informed of
package updates.

	Mailing list graciously hosted [http://groups.google.com/group/yourlabs] by Google [http://groups.google.com]

	Git graciously hosted [https://github.com/yourlabs/django-cities-light/] by GitHub [http://github.com],

	Documentation graciously hosted [http://django-cities-light.rtfd.org] by RTFD [http://rtfd.org],

	Package graciously hosted [http://pypi.python.org/pypi/django-cities-light/] by PyPi [http://pypi.python.org/pypi],

	Continuous integration graciously hosted [http://travis-ci.org/yourlabs/django-cities-light] by Travis-ci [http://travis-ci.org]

	Online paid support provided via HackHands [https://hackhands.com/jpic/],

Contents:

	Populating the database
	Data install or update

	Signals

	Configure logging

	Simple django app
	Settings

	Models

	Admin

	cities_light.contrib
	For django-ajax-selects

	For djangorestframework

	Ideas for contributions

FAQ

Recommended RDBMS

The recommended RDBMS is PostgreSQL, it’s faster, safer, saner, more robust and
simpler than MySQL.

You can see on travis that build jobs with MySQL take twice as long as build
jobs on PostgreSQL and SQLite.

MySQL errors with special characters, how to fix it ?

The cities_light command is continuously tested on travis-ci [http://travis-ci.org/yourlabs/django-cities-light] on all supported
databases: if it works there then it should work for you.

If you’re new to development in general, you might not be familiar with the
concept of encodings and collations. Unless you have a good reason, you
must have utf-8 database tables. See MySQL documentation [http://dev.mysql.com/doc/refman/5.0/en/charset-unicode.html] for details.

We’re pointing to MySQL documentations because PostgreSQL users probably know
what UTF-8 is and won’t have any problem with that.

Some data fail to import, how to skip them ?

GeoNames is not perfect and there might be some edge cases from time to time.
We want the cities_light management command to work for everybody so you
should open an issue in GitHub [https://github.com/yourlabs/django-cities-light/issues?state=open] if you
get a crash from that command.

However, we don’t want you to be blocked, so keep in mind that you can use
Signals like cities_light.city_items_pre_import,
cities_light.region_items_pre_import,
cities_light.country_items_pre_import, to skip or fix items before
they get inserted in the database by the normal process.

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2012-2016, James Pic & contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-cities-light 3.2.0 documentation

Populating the database

Data install or update

Populate your database with command:

./manage.py cities_light

By default, this command attempts to do the least work possible, update what is
necessary only. If you want to disable all these optimisations/skips, use –force-all.

This command is well documented, consult the help with:

./manage.py help cities_light

Signals

Signals for this application.

	
cities_light.signals.city_items_pre_import

	Emited by city_import() in the cities_light command for each row parsed in
the data file. If a signal reciever raises InvalidItems then it will be
skipped.

An example is worth 1000 words: if you want to import only cities from
France, USA and Belgium you could do as such:

import cities_light

def filter_city_import(sender, items, **kwargs):
 if items[8] not in ('FR', 'US', 'BE'):
 raise cities_light.InvalidItems()

cities_light.signals.city_items_pre_import.connect(filter_city_import)

Note: this signal gets a list rather than a City instance for performance
reasons.

	
cities_light.signals.region_items_pre_import

	Same as city_items_pre_import.

	
cities_light.signals.country_items_pre_import

	Same as region_items_pre_import and
cities_light.signals.city_items_pre_import.

	
cities_light.signals.city_items_post_import

	Emited by city_import() in the cities_light command for each row parsed in
the data file, right before saving City object. Along with City instance
it pass items with geonames data. Will be useful, if you define custom
cities models with settings.CITIES_LIGHT_APP_NAME.

Example:

import cities_light

def process_city_import(sender, instance, items, **kwargs):
 instance.timezone = items[17]

cities_light.signals.city_items_post_import.connect(process_city_import)

	
cities_light.signals.region_items_post_import

	Same as city_items_post_import.

	
cities_light.signals.country_items_post_import

	Same as region_items_post_import and
cities_light.signals.city_items_post_import.

	
exception cities_light.exceptions.CitiesLightException[source]

	Base exception class for this app’s exceptions.

	
exception cities_light.exceptions.InvalidItems[source]

	The cities_light command will skip item if a city_items_pre_import signal
reciever raises this exception.

	
exception cities_light.exceptions.SourceFileDoesNotExist(source)[source]

	A source file could not be found.

Configure logging

This command is made to be compatible with background usage like from cron, to
keep the database fresh. So it doesn’t do direct output. To get output from
this command, simply configure a handler and formatter for cities_light
logger. For example:

LOGGING = {
 'version': 1,
 'disable_existing_loggers': False,
 'formatters': {
 'simple': {
 'format': '%(levelname)s %(message)s'
 },
 },
 'handlers': {
 'console':{
 'level':'DEBUG',
 'class':'logging.StreamHandler',
 'formatter': 'simple'
 },
 },
 'loggers': {
 'cities_light': {
 'handlers':['console'],
 'propagate': True,
 'level':'DEBUG',
 },
 # also use this one to see SQL queries
 'django': {
 'handlers':['console'],
 'propagate': True,
 'level':'DEBUG',
 },
 }
}

 Copyright 2012-2016, James Pic & contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-cities-light 3.2.0 documentation

Simple django app

Settings

Settings for this application. The most important is TRANSLATION_LANGUAGES
because it’s probably project specific.

	
cities_light.settings.TRANSLATION_LANGUAGES

	List of language codes. It is used to generate the alternate_names property
of cities_light models. You want to keep it as small as possible.
By default, it includes the most popular languages according to wikipedia,
which use a rather ascii-compatible alphabet. It also contains ‘abbr’ which
stands for ‘abbreviation’, you might want to include this one as well.

See:

	http://download.geonames.org/export/dump/iso-languagecodes.txt

Example:

CITIES_LIGHT_TRANSLATION_LANGUAGES = ['es', 'en', 'fr', 'abbr']

	
cities_light.settings.INCLUDE_COUNTRIES

	List of country codes to include. It’s None by default which lets all
countries in the database. But if you only wanted French and Belgium
countries/regions/cities, you could set it as such:

CITIES_LIGHT_INCLUDE_COUNTRIES = ['FR', 'BE']

	
cities_light.settings.INCLUDE_CITY_TYPES

	List of city feature codes to include. They are described at
http://www.geonames.org/export/codes.html, section “P city, village”.

	CITIES_LIGHT_INCLUDE_CITY_TYPES = [

	‘PPL’, ‘PPLA’, ‘PPLA2’, ‘PPLA3’, ‘PPLA4’, ‘PPLC’,
‘PPLF’, ‘PPLG’, ‘PPLL’, ‘PPLR’, ‘PPLS’, ‘STLMT’,

]

	
cities_light.settings.COUNTRY_SOURCES

	A list of urls to download country info from. Default is countryInfo.txt
from geonames download server. Overridable in
settings.CITIES_LIGHT_COUNTRY_SOURCES.

	
cities_light.settings.REGION_SOURCES

	A list of urls to download region info from. Default is
admin1CodesASCII.txt from geonames download server. Overridable in
settings.CITIES_LIGHT_REGION_SOURCES.

	
cities_light.settings.CITY_SOURCES

	A list of urls to download city info from. Default is cities15000.zip from
geonames download server. Overridable in
settings.CITIES_LIGHT_CITY_SOURCES.

	
cities_light.settings.TRANSLATION_SOURCES

	A list of urls to download alternate names info from. Default is
alternateNames.zip from geonames download server. Overridable in
settings.CITIES_LIGHT_TRANSLATION_SOURCES.

	
cities_light.settings.SOURCES

	A list with all sources, auto-generated.

	
cities_light.settings.DATA_DIR

	Absolute path to download and extract data into. Default is
cities_light/data. Overridable in settings.CITIES_LIGHT_DATA_DIR

	
cities_light.settings.INDEX_SEARCH_NAMES

	If your database engine for cities_light supports indexing TextFields (ie.
it is not MySQL), then this should be set to True. You might have to
override this setting with settings.CITIES_LIGHT_INDEX_SEARCH_NAMES if
using several databases for your project.

	
cities_light.settings.CITIES_LIGHT_APP_NAME

	Modify it only if you want to define your custom cities models, that
are inherited from abstract models of this package.
It must be equal to app name, where custom models are defined.
For example, if they are in geo/models.py, then set
settings.CITIES_LIGHT_APP_NAME = 'geo'.
Note: you can’t define one custom model, you have to define all of
cities_light models, even if you want to modify only one.

	
class cities_light.settings.ICountry[source]

	Country field indexes in geonames.

	
class cities_light.settings.IRegion[source]

	Region field indexes in geonames.

	
class cities_light.settings.ICity[source]

	City field indexes in geonames.
Description of fields: http://download.geonames.org/export/dump/readme.txt

	
class cities_light.settings.IAlternate[source]

	Alternate names field indexes in geonames.
Description of fields: http://download.geonames.org/export/dump/readme.txt

Models

See source for details.

Admin

See source for details.

 Copyright 2012-2016, James Pic & contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	django-cities-light 3.2.0 documentation

cities_light.contrib

For django-ajax-selects

For djangorestframework

The contrib contains support for v1, v2 and v3 of django restframework.

Django REST framework 3

This contrib package defines list and detail endpoints for City, Region and
Country. If rest_framework (v3) is installed, all you have to do is add this url
include:

url(r'^cities_light/api/', include('cities_light.contrib.restframework3')),

This will configure six endpoints:

^cities/$ [name='cities-light-api-city-list']
^cities/(?P<pk>[^/]+)/$ [name='cities-light-api-city-detail']
^countries/$ [name='cities-light-api-country-list']
^countries/(?P<pk>[^/]+)/$ [name='cities-light-api-country-detail']
^regions/$ [name='cities-light-api-region-list']
^regions/(?P<pk>[^/]+)/$ [name='cities-light-api-region-detail']

	All list endpoints support search with a query parameter q::

	/cities/?q=london

For Region and Country endpoints, the search will be within name_ascii field while
for City it will search in search_names field. HyperlinkedModelSerializer is used
for these models and therefore every response object contains url to self field and
urls for related models. You can configure pagination using the standard rest_framework
pagination settings in your project settings.py.

Ideas for contributions

	templatetag to render a city’s map using some external service

	flag images, maybe with django-countryflags

	currencies

	generate po files when parsing alternate names

 Copyright 2012-2016, James Pic & contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	django-cities-light 3.2.0 documentation

 Python Module Index

 c

 			

 		
 c	

 	[image: -]
 	
 cities_light	

 	
 	
 cities_light.exceptions	

 	
 	
 cities_light.settings	

 	
 	
 cities_light.signals	

 Copyright 2012-2016, James Pic & contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	django-cities-light 3.2.0 documentation

Index

 C
 | D
 | I
 | R
 | S
 | T

C

 	

 	cities_light.exceptions (module)

 	cities_light.settings (module)

 	cities_light.signals (module)

 	CITIES_LIGHT_APP_NAME (in module cities_light.settings)

 	CitiesLightException

 	city_items_post_import (in module cities_light.signals)

 	

 	city_items_pre_import (in module cities_light.signals)

 	CITY_SOURCES (in module cities_light.settings)

 	country_items_post_import (in module cities_light.signals)

 	country_items_pre_import (in module cities_light.signals)

 	COUNTRY_SOURCES (in module cities_light.settings)

D

 	

 	DATA_DIR (in module cities_light.settings)

I

 	

 	IAlternate (class in cities_light.settings)

 	ICity (class in cities_light.settings)

 	ICountry (class in cities_light.settings)

 	INCLUDE_CITY_TYPES (in module cities_light.settings)

 	

 	INCLUDE_COUNTRIES (in module cities_light.settings)

 	INDEX_SEARCH_NAMES (in module cities_light.settings)

 	InvalidItems

 	IRegion (class in cities_light.settings)

R

 	

 	region_items_post_import (in module cities_light.signals)

 	region_items_pre_import (in module cities_light.signals)

 	

 	REGION_SOURCES (in module cities_light.settings)

S

 	

 	SourceFileDoesNotExist

 	

 	SOURCES (in module cities_light.settings)

T

 	

 	TRANSLATION_LANGUAGES (in module cities_light.settings)

 	

 	TRANSLATION_SOURCES (in module cities_light.settings)

 Copyright 2012-2016, James Pic & contributors.
 Created using Sphinx 1.3.5.

 _static/comment-close.png

_static/comment.png

_static/down.png

_static/file.png

_static/plus.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

_static/ajax-loader.gif

search.html

 Navigation

 		
 index

 		
 modules |

 		django-cities-light 3.2.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012-2016, James Pic & contributors.
 Created using Sphinx 1.3.5.

_static/comment-bright.png

_modules/cities_light/exceptions.html

 Navigation

 		
 index

 		
 modules |

 		django-cities-light 3.2.0 documentation »

 		Module code »

 Source code for cities_light.exceptions

from __future__ import unicode_literals

[docs]class CitiesLightException(Exception):
 """ Base exception class for this app's exceptions. """
 pass

[docs]class InvalidItems(CitiesLightException):
 """
 The cities_light command will skip item if a city_items_pre_import signal
 reciever raises this exception.
 """
 pass

[docs]class SourceFileDoesNotExist(CitiesLightException):
 """ A source file could not be found. """
 def __init__(self, source):
 super(SourceFileDoesNotExist, self).__init__(
 '%s does not exist' % source)

 © Copyright 2012-2016, James Pic & contributors.
 Created using Sphinx 1.3.5.

_modules/cities_light/settings.html

 Navigation

 		
 index

 		
 modules |

 		django-cities-light 3.2.0 documentation »

 		Module code »

 Source code for cities_light.settings

"""
Settings for this application. The most important is TRANSLATION_LANGUAGES
because it's probably project specific.

.. py:data:: TRANSLATION_LANGUAGES

 List of language codes. It is used to generate the alternate_names property
 of cities_light models. You want to keep it as small as possible.
 By default, it includes the most popular languages according to wikipedia,
 which use a rather ascii-compatible alphabet. It also contains 'abbr' which
 stands for 'abbreviation', you might want to include this one as well.

 See:

 - http://download.geonames.org/export/dump/iso-languagecodes.txt

 Example::

 CITIES_LIGHT_TRANSLATION_LANGUAGES = ['es', 'en', 'fr', 'abbr']

.. py:data:: INCLUDE_COUNTRIES

 List of country codes to include. It's None by default which lets all
 countries in the database. But if you only wanted French and Belgium
 countries/regions/cities, you could set it as such::

 CITIES_LIGHT_INCLUDE_COUNTRIES = ['FR', 'BE']

.. py:data:: INCLUDE_CITY_TYPES

 List of city feature codes to include. They are described at
 http://www.geonames.org/export/codes.html, section "P city, village".

 CITIES_LIGHT_INCLUDE_CITY_TYPES = [
 'PPL', 'PPLA', 'PPLA2', 'PPLA3', 'PPLA4', 'PPLC',
 'PPLF', 'PPLG', 'PPLL', 'PPLR', 'PPLS', 'STLMT',
]

.. py:data:: COUNTRY_SOURCES

 A list of urls to download country info from. Default is countryInfo.txt
 from geonames download server. Overridable in
 ``settings.CITIES_LIGHT_COUNTRY_SOURCES``.

.. py:data:: REGION_SOURCES

 A list of urls to download region info from. Default is
 admin1CodesASCII.txt from geonames download server. Overridable in
 ``settings.CITIES_LIGHT_REGION_SOURCES``.

.. py:data:: CITY_SOURCES

 A list of urls to download city info from. Default is cities15000.zip from
 geonames download server. Overridable in
 ``settings.CITIES_LIGHT_CITY_SOURCES``.

.. py:data:: TRANSLATION_SOURCES

 A list of urls to download alternate names info from. Default is
 alternateNames.zip from geonames download server. Overridable in
 ``settings.CITIES_LIGHT_TRANSLATION_SOURCES``.

.. py:data:: SOURCES

 A list with all sources, auto-generated.

.. py:data:: DATA_DIR

 Absolute path to download and extract data into. Default is
 cities_light/data. Overridable in ``settings.CITIES_LIGHT_DATA_DIR``

.. py:data:: INDEX_SEARCH_NAMES

 If your database engine for cities_light supports indexing TextFields (ie.
 it is **not** MySQL), then this should be set to True. You might have to
 override this setting with ``settings.CITIES_LIGHT_INDEX_SEARCH_NAMES`` if
 using several databases for your project.

.. py:data:: CITIES_LIGHT_APP_NAME

 Modify it only if you want to define your custom cities models, that
 are inherited from abstract models of this package.
 It must be equal to app name, where custom models are defined.
 For example, if they are in geo/models.py, then set
 ``settings.CITIES_LIGHT_APP_NAME = 'geo'``.
 Note: you can't define one custom model, you have to define all of
 cities_light models, even if you want to modify only one.
"""
from __future__ import unicode_literals

import os.path

from django.conf import settings

__all__ = ['COUNTRY_SOURCES', 'REGION_SOURCES', 'CITY_SOURCES',
 'TRANSLATION_LANGUAGES', 'TRANSLATION_SOURCES', 'SOURCES', 'DATA_DIR',
 'INDEX_SEARCH_NAMES', 'INCLUDE_COUNTRIES', 'INCLUDE_CITY_TYPES',
 'DEFAULT_APP_NAME', 'CITIES_LIGHT_APP_NAME',
 'ICountry', 'IRegion', 'ICity', 'IAlternate']

COUNTRY_SOURCES = getattr(settings, 'CITIES_LIGHT_COUNTRY_SOURCES',
 ['http://download.geonames.org/export/dump/countryInfo.txt'])
REGION_SOURCES = getattr(settings, 'CITIES_LIGHT_REGION_SOURCES',
 ['http://download.geonames.org/export/dump/admin1CodesASCII.txt'])
CITY_SOURCES = getattr(settings, 'CITIES_LIGHT_CITY_SOURCES',
 ['http://download.geonames.org/export/dump/cities15000.zip'])
TRANSLATION_SOURCES = getattr(settings, 'CITIES_LIGHT_TRANSLATION_SOURCES',
 ['http://download.geonames.org/export/dump/alternateNames.zip'])
TRANSLATION_LANGUAGES = getattr(settings, 'CITIES_LIGHT_TRANSLATION_LANGUAGES',
 ['es', 'en', 'pt', 'de', 'pl', 'abbr'])

SOURCES = list(COUNTRY_SOURCES) + list(REGION_SOURCES) + list(CITY_SOURCES)
SOURCES += TRANSLATION_SOURCES

DATA_DIR = getattr(settings, 'CITIES_LIGHT_DATA_DIR',
 os.path.normpath(os.path.join(
 os.path.dirname(os.path.realpath(__file__)), 'data')))

INCLUDE_COUNTRIES = getattr(settings, 'CITIES_LIGHT_INCLUDE_COUNTRIES', None)

Feature codes are described in the "P city, village" section at
http://www.geonames.org/export/codes.html
INCLUDE_CITY_TYPES = getattr(
 settings,
 'CITIES_LIGHT_INCLUDE_CITY_TYPES',
 ['PPL', 'PPLA', 'PPLA2', 'PPLA3', 'PPLA4', 'PPLC',
 'PPLF', 'PPLG', 'PPLL', 'PPLR', 'PPLS', 'STLMT']
)

MySQL doesn't support indexing TextFields
INDEX_SEARCH_NAMES = getattr(settings, 'CITIES_LIGHT_INDEX_SEARCH_NAMES', None)
if INDEX_SEARCH_NAMES is None:
 INDEX_SEARCH_NAMES = True
 for database in list(settings.DATABASES.values()):
 if 'mysql' in database['ENGINE'].lower():
 INDEX_SEARCH_NAMES = False

DEFAULT_APP_NAME = 'cities_light'
CITIES_LIGHT_APP_NAME = getattr(settings, 'CITIES_LIGHT_APP_NAME',
 DEFAULT_APP_NAME)

[docs]class ICountry:
 """
 Country field indexes in geonames.
 """
 code = 0
 code3 = 1
 codeNum = 2
 fips = 3
 name = 4
 capital = 5
 area = 6
 population = 7
 continent = 8
 tld = 9
 currencyCode = 10
 currencyName = 11
 phone = 12
 postalCodeFormat = 13
 postalCodeRegex = 14
 languages = 15
 geonameid = 16
 neighbours = 17
 equivalentFips = 18

[docs]class IRegion:
 """
 Region field indexes in geonames.
 """
 code = 0
 name = 1
 asciiName = 2
 geonameid = 3

[docs]class ICity:
 """
 City field indexes in geonames.
 Description of fields: http://download.geonames.org/export/dump/readme.txt
 """
 geonameid = 0
 name = 1
 asciiName = 2
 alternateNames = 3
 latitude = 4
 longitude = 5
 featureClass = 6
 featureCode = 7
 countryCode = 8
 cc2 = 9
 admin1Code = 10
 admin2Code = 11
 admin3Code = 12
 admin4Code = 13
 population = 14
 elevation = 15
 gtopo30 = 16
 timezone = 17
 modificationDate = 18

[docs]class IAlternate:
 """
 Alternate names field indexes in geonames.
 Description of fields: http://download.geonames.org/export/dump/readme.txt
 """
 nameid = 0
 geonameid = 1
 language = 2
 name = 3
 isPreferred = 4
 isShort = 5
 isColloquial = 6
 isHistoric = 7

 © Copyright 2012-2016, James Pic & contributors.
 Created using Sphinx 1.3.5.

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		django-cities-light 3.2.0 documentation »

 All modules for which code is available

		cities_light.exceptions

		cities_light.settings

		django.dispatch.dispatcher

 © Copyright 2012-2016, James Pic & contributors.
 Created using Sphinx 1.3.5.

_modules/django/dispatch/dispatcher.html

 Navigation

 		
 index

 		
 modules |

 		django-cities-light 3.2.0 documentation »

 		Module code »

 Source code for django.dispatch.dispatcher

import sys
import threading
import warnings
import weakref

from django.utils import six
from django.utils.deprecation import RemovedInDjango20Warning
from django.utils.inspect import func_accepts_kwargs
from django.utils.six.moves import range

if six.PY2:
 from .weakref_backports import WeakMethod
else:
 from weakref import WeakMethod

def _make_id(target):
 if hasattr(target, '__func__'):
 return (id(target.__self__), id(target.__func__))
 return id(target)
NONE_ID = _make_id(None)

A marker for caching
NO_RECEIVERS = object()

class Signal(object):
 """
 Base class for all signals

 Internal attributes:

 receivers
 { receiverkey (id) : weakref(receiver) }
 """
 def __init__(self, providing_args=None, use_caching=False):
 """
 Create a new signal.

 providing_args
 A list of the arguments this signal can pass along in a send() call.
 """
 self.receivers = []
 if providing_args is None:
 providing_args = []
 self.providing_args = set(providing_args)
 self.lock = threading.Lock()
 self.use_caching = use_caching
 # For convenience we create empty caches even if they are not used.
 # A note about caching: if use_caching is defined, then for each
 # distinct sender we cache the receivers that sender has in
 # 'sender_receivers_cache'. The cache is cleaned when .connect() or
 # .disconnect() is called and populated on send().
 self.sender_receivers_cache = weakref.WeakKeyDictionary() if use_caching else {}
 self._dead_receivers = False

 def connect(self, receiver, sender=None, weak=True, dispatch_uid=None):
 """
 Connect receiver to sender for signal.

 Arguments:

 receiver
 A function or an instance method which is to receive signals.
 Receivers must be hashable objects.

 If weak is True, then receiver must be weak referenceable.

 Receivers must be able to accept keyword arguments.

 If a receiver is connected with a dispatch_uid argument, it
 will not be added if another receiver was already connected
 with that dispatch_uid.

 sender
 The sender to which the receiver should respond. Must either be
 of type Signal, or None to receive events from any sender.

 weak
 Whether to use weak references to the receiver. By default, the
 module will attempt to use weak references to the receiver
 objects. If this parameter is false, then strong references will
 be used.

 dispatch_uid
 An identifier used to uniquely identify a particular instance of
 a receiver. This will usually be a string, though it may be
 anything hashable.
 """
 from django.conf import settings

 # If DEBUG is on, check that we got a good receiver
 if settings.configured and settings.DEBUG:
 assert callable(receiver), "Signal receivers must be callable."

 # Check for **kwargs
 if not func_accepts_kwargs(receiver):
 raise ValueError("Signal receivers must accept keyword arguments (**kwargs).")

 if dispatch_uid:
 lookup_key = (dispatch_uid, _make_id(sender))
 else:
 lookup_key = (_make_id(receiver), _make_id(sender))

 if weak:
 ref = weakref.ref
 receiver_object = receiver
 # Check for bound methods
 if hasattr(receiver, '__self__') and hasattr(receiver, '__func__'):
 ref = WeakMethod
 receiver_object = receiver.__self__
 if six.PY3:
 receiver = ref(receiver)
 weakref.finalize(receiver_object, self._remove_receiver)
 else:
 receiver = ref(receiver, self._remove_receiver)

 with self.lock:
 self._clear_dead_receivers()
 for r_key, _ in self.receivers:
 if r_key == lookup_key:
 break
 else:
 self.receivers.append((lookup_key, receiver))
 self.sender_receivers_cache.clear()

 def disconnect(self, receiver=None, sender=None, weak=None, dispatch_uid=None):
 """
 Disconnect receiver from sender for signal.

 If weak references are used, disconnect need not be called. The receiver
 will be remove from dispatch automatically.

 Arguments:

 receiver
 The registered receiver to disconnect. May be none if
 dispatch_uid is specified.

 sender
 The registered sender to disconnect

 dispatch_uid
 the unique identifier of the receiver to disconnect
 """
 if weak is not None:
 warnings.warn("Passing `weak` to disconnect has no effect.",
 RemovedInDjango20Warning, stacklevel=2)
 if dispatch_uid:
 lookup_key = (dispatch_uid, _make_id(sender))
 else:
 lookup_key = (_make_id(receiver), _make_id(sender))

 disconnected = False
 with self.lock:
 self._clear_dead_receivers()
 for index in range(len(self.receivers)):
 (r_key, _) = self.receivers[index]
 if r_key == lookup_key:
 disconnected = True
 del self.receivers[index]
 break
 self.sender_receivers_cache.clear()
 return disconnected

 def has_listeners(self, sender=None):
 return bool(self._live_receivers(sender))

 def send(self, sender, **named):
 """
 Send signal from sender to all connected receivers.

 If any receiver raises an error, the error propagates back through send,
 terminating the dispatch loop. So it's possible that all receivers
 won't be called if an error is raised.

 Arguments:

 sender
 The sender of the signal. Either a specific object or None.

 named
 Named arguments which will be passed to receivers.

 Returns a list of tuple pairs [(receiver, response), ...].
 """
 responses = []
 if not self.receivers or self.sender_receivers_cache.get(sender) is NO_RECEIVERS:
 return responses

 for receiver in self._live_receivers(sender):
 response = receiver(signal=self, sender=sender, **named)
 responses.append((receiver, response))
 return responses

 def send_robust(self, sender, **named):
 """
 Send signal from sender to all connected receivers catching errors.

 Arguments:

 sender
 The sender of the signal. Can be any python object (normally one
 registered with a connect if you actually want something to
 occur).

 named
 Named arguments which will be passed to receivers. These
 arguments must be a subset of the argument names defined in
 providing_args.

 Return a list of tuple pairs [(receiver, response), ...]. May raise
 DispatcherKeyError.

 If any receiver raises an error (specifically any subclass of
 Exception), the error instance is returned as the result for that
 receiver. The traceback is always attached to the error at
 ``__traceback__``.
 """
 responses = []
 if not self.receivers or self.sender_receivers_cache.get(sender) is NO_RECEIVERS:
 return responses

 # Call each receiver with whatever arguments it can accept.
 # Return a list of tuple pairs [(receiver, response), ...].
 for receiver in self._live_receivers(sender):
 try:
 response = receiver(signal=self, sender=sender, **named)
 except Exception as err:
 if not hasattr(err, '__traceback__'):
 err.__traceback__ = sys.exc_info()[2]
 responses.append((receiver, err))
 else:
 responses.append((receiver, response))
 return responses

 def _clear_dead_receivers(self):
 # Note: caller is assumed to hold self.lock.
 if self._dead_receivers:
 self._dead_receivers = False
 new_receivers = []
 for r in self.receivers:
 if isinstance(r[1], weakref.ReferenceType) and r[1]() is None:
 continue
 new_receivers.append(r)
 self.receivers = new_receivers

 def _live_receivers(self, sender):
 """
 Filter sequence of receivers to get resolved, live receivers.

 This checks for weak references and resolves them, then returning only
 live receivers.
 """
 receivers = None
 if self.use_caching and not self._dead_receivers:
 receivers = self.sender_receivers_cache.get(sender)
 # We could end up here with NO_RECEIVERS even if we do check this case in
 # .send() prior to calling _live_receivers() due to concurrent .send() call.
 if receivers is NO_RECEIVERS:
 return []
 if receivers is None:
 with self.lock:
 self._clear_dead_receivers()
 senderkey = _make_id(sender)
 receivers = []
 for (receiverkey, r_senderkey), receiver in self.receivers:
 if r_senderkey == NONE_ID or r_senderkey == senderkey:
 receivers.append(receiver)
 if self.use_caching:
 if not receivers:
 self.sender_receivers_cache[sender] = NO_RECEIVERS
 else:
 # Note, we must cache the weakref versions.
 self.sender_receivers_cache[sender] = receivers
 non_weak_receivers = []
 for receiver in receivers:
 if isinstance(receiver, weakref.ReferenceType):
 # Dereference the weak reference.
 receiver = receiver()
 if receiver is not None:
 non_weak_receivers.append(receiver)
 else:
 non_weak_receivers.append(receiver)
 return non_weak_receivers

 def _remove_receiver(self, receiver=None):
 # Mark that the self.receivers list has dead weakrefs. If so, we will
 # clean those up in connect, disconnect and _live_receivers while
 # holding self.lock. Note that doing the cleanup here isn't a good
 # idea, _remove_receiver() will be called as side effect of garbage
 # collection, and so the call can happen while we are already holding
 # self.lock.
 self._dead_receivers = True

def receiver(signal, **kwargs):
 """
 A decorator for connecting receivers to signals. Used by passing in the
 signal (or list of signals) and keyword arguments to connect::

 @receiver(post_save, sender=MyModel)
 def signal_receiver(sender, **kwargs):
 ...

 @receiver([post_save, post_delete], sender=MyModel)
 def signals_receiver(sender, **kwargs):
 ...
 """
 def _decorator(func):
 if isinstance(signal, (list, tuple)):
 for s in signal:
 s.connect(func, **kwargs)
 else:
 signal.connect(func, **kwargs)
 return func
 return _decorator

 © Copyright 2012-2016, James Pic & contributors.
 Created using Sphinx 1.3.5.

