
django-cities-light Documentation
Release 3.2.0

James Pic

May 09, 2016

Contents

1 Upgrade 3

2 Installation 5

3 Data update 7

4 Resources 9
4.1 Populating the database . 9
4.2 Simple django app . 11
4.3 cities_light.contrib . 13

5 FAQ 15
5.1 Recommended RDBMS . 15
5.2 MySQL errors with special characters, how to fix it ? . 15
5.3 Some data fail to import, how to skip them ? . 15

6 Indices and tables 17

Python Module Index 19

i

ii

django-cities-light Documentation, Release 3.2.0

This add-on provides models and commands to import country, region/state, and city data in your database.

The data is pulled from GeoNames and contains cities, regions/states and countries.

Spatial query support is not required by this application.

This application is very simple and is useful if you want to make a simple address book for example. If you intend to
build a fully featured spatial database, you should use django-cities.

Requirements:

• Python 2.7 or 3.3,

• Django >= 1.7

• MySQL or PostgreSQL or SQLite.

Yes, for some reason, code that used to work on MySQL (not without pain xD) does not work anymore. So we’re now
using django.db.transaction.atomic which comes from Django 1.6 just to support MySQL quacks.

Contents 1

http://www.geonames.org/
https://github.com/coderholic/django-cities

django-cities-light Documentation, Release 3.2.0

2 Contents

CHAPTER 1

Upgrade

See CHANGELOG.

3

django-cities-light Documentation, Release 3.2.0

4 Chapter 1. Upgrade

CHAPTER 2

Installation

Install django-cities-light:

pip install django-cities-light

Or the development version:

pip install -e git+git@github.com:yourlabs/django-cities-light.git#egg=cities_light

Add cities_light to your INSTALLED_APPS.

Configure filters to exclude data you don’t want, ie.:

CITIES_LIGHT_TRANSLATION_LANGUAGES = ['fr', 'en']
CITIES_LIGHT_INCLUDE_COUNTRIES = ['FR']
CITIES_LIGHT_INCLUDE_CITY_TYPES = ['PPL', 'PPLA', 'PPLA2', 'PPLA3', 'PPLA4', 'PPLC', 'PPLF', 'PPLG', 'PPLL', 'PPLR', 'PPLS', 'STLMT',]

Now, run migrations, it will only create tables for models that are not disabled:

./manage.py migrate

5

django-cities-light Documentation, Release 3.2.0

6 Chapter 2. Installation

CHAPTER 3

Data update

Finally, populate your database with command:

./manage.py cities_light

This command is well documented, consult the help with:

./manage.py help cities_light

7

django-cities-light Documentation, Release 3.2.0

8 Chapter 3. Data update

CHAPTER 4

Resources

You could subscribe to the mailing list ask questions or just be informed of package updates.

• Mailing list graciously hosted by Google

• Git graciously hosted by GitHub,

• Documentation graciously hosted by RTFD,

• Package graciously hosted by PyPi,

• Continuous integration graciously hosted by Travis-ci

• **Online paid support** provided via HackHands,

Contents:

4.1 Populating the database

4.1.1 Data install or update

Populate your database with command:

./manage.py cities_light

By default, this command attempts to do the least work possible, update what is necessary only. If you want to disable
all these optimisations/skips, use –force-all.

This command is well documented, consult the help with:

./manage.py help cities_light

4.1.2 Signals

Signals for this application.

cities_light.signals.city_items_pre_import
Emited by city_import() in the cities_light command for each row parsed in the data file. If a signal reciever
raises InvalidItems then it will be skipped.

An example is worth 1000 words: if you want to import only cities from France, USA and Belgium you could
do as such:

9

http://groups.google.com/group/yourlabs
http://groups.google.com
https://github.com/yourlabs/django-cities-light/
http://github.com
http://django-cities-light.rtfd.org
http://rtfd.org
http://pypi.python.org/pypi/django-cities-light/
http://pypi.python.org/pypi
http://travis-ci.org/yourlabs/django-cities-light
http://travis-ci.org
https://hackhands.com/jpic/

django-cities-light Documentation, Release 3.2.0

import cities_light

def filter_city_import(sender, items, **kwargs):
if items[8] not in ('FR', 'US', 'BE'):

raise cities_light.InvalidItems()

cities_light.signals.city_items_pre_import.connect(filter_city_import)

Note: this signal gets a list rather than a City instance for performance reasons.

cities_light.signals.region_items_pre_import
Same as city_items_pre_import.

cities_light.signals.country_items_pre_import
Same as region_items_pre_import and cities_light.signals.city_items_pre_import.

cities_light.signals.city_items_post_import
Emited by city_import() in the cities_light command for each row parsed in the data file, right before saving
City object. Along with City instance it pass items with geonames data. Will be useful, if you define custom
cities models with settings.CITIES_LIGHT_APP_NAME.

Example:

import cities_light

def process_city_import(sender, instance, items, **kwargs):
instance.timezone = items[17]

cities_light.signals.city_items_post_import.connect(process_city_import)

cities_light.signals.region_items_post_import
Same as city_items_post_import.

cities_light.signals.country_items_post_import
Same as region_items_post_import and cities_light.signals.city_items_post_import.

exception cities_light.exceptions.CitiesLightException
Base exception class for this app’s exceptions.

exception cities_light.exceptions.InvalidItems
The cities_light command will skip item if a city_items_pre_import signal reciever raises this exception.

exception cities_light.exceptions.SourceFileDoesNotExist(source)
A source file could not be found.

4.1.3 Configure logging

This command is made to be compatible with background usage like from cron, to keep the database fresh. So it
doesn’t do direct output. To get output from this command, simply configure a handler and formatter for cities_light
logger. For example:

LOGGING = {
'version': 1,
'disable_existing_loggers': False,
'formatters': {

'simple': {
'format': '%(levelname)s %(message)s'

},
},

10 Chapter 4. Resources

django-cities-light Documentation, Release 3.2.0

'handlers': {
'console':{

'level':'DEBUG',
'class':'logging.StreamHandler',
'formatter': 'simple'

},
},
'loggers': {

'cities_light': {
'handlers':['console'],
'propagate': True,
'level':'DEBUG',

},
also use this one to see SQL queries
'django': {

'handlers':['console'],
'propagate': True,
'level':'DEBUG',

},
}

}

4.2 Simple django app

4.2.1 Settings

Settings for this application. The most important is TRANSLATION_LANGUAGES because it’s probably project
specific.

cities_light.settings.TRANSLATION_LANGUAGES
List of language codes. It is used to generate the alternate_names property of cities_light models. You want to
keep it as small as possible. By default, it includes the most popular languages according to wikipedia, which
use a rather ascii-compatible alphabet. It also contains ‘abbr’ which stands for ‘abbreviation’, you might want
to include this one as well.

See:

•http://download.geonames.org/export/dump/iso-languagecodes.txt

Example:

CITIES_LIGHT_TRANSLATION_LANGUAGES = ['es', 'en', 'fr', 'abbr']

cities_light.settings.INCLUDE_COUNTRIES
List of country codes to include. It’s None by default which lets all countries in the database. But if you only
wanted French and Belgium countries/regions/cities, you could set it as such:

CITIES_LIGHT_INCLUDE_COUNTRIES = ['FR', 'BE']

cities_light.settings.INCLUDE_CITY_TYPES
List of city feature codes to include. They are described at http://www.geonames.org/export/codes.html, section
“P city, village”.

CITIES_LIGHT_INCLUDE_CITY_TYPES = [‘PPL’, ‘PPLA’, ‘PPLA2’, ‘PPLA3’, ‘PPLA4’,
‘PPLC’, ‘PPLF’, ‘PPLG’, ‘PPLL’, ‘PPLR’, ‘PPLS’, ‘STLMT’,

]

4.2. Simple django app 11

http://download.geonames.org/export/dump/iso-languagecodes.txt
http://www.geonames.org/export/codes.html

django-cities-light Documentation, Release 3.2.0

cities_light.settings.COUNTRY_SOURCES
A list of urls to download country info from. Default is countryInfo.txt from geonames download server. Over-
ridable in settings.CITIES_LIGHT_COUNTRY_SOURCES.

cities_light.settings.REGION_SOURCES
A list of urls to download region info from. Default is admin1CodesASCII.txt from geonames download server.
Overridable in settings.CITIES_LIGHT_REGION_SOURCES.

cities_light.settings.CITY_SOURCES
A list of urls to download city info from. Default is cities15000.zip from geonames download server. Overrid-
able in settings.CITIES_LIGHT_CITY_SOURCES.

cities_light.settings.TRANSLATION_SOURCES
A list of urls to download alternate names info from. Default is alternateNames.zip from geonames download
server. Overridable in settings.CITIES_LIGHT_TRANSLATION_SOURCES.

cities_light.settings.SOURCES
A list with all sources, auto-generated.

cities_light.settings.DATA_DIR
Absolute path to download and extract data into. Default is cities_light/data. Overridable in
settings.CITIES_LIGHT_DATA_DIR

cities_light.settings.INDEX_SEARCH_NAMES
If your database engine for cities_light supports indexing TextFields (ie. it is not
MySQL), then this should be set to True. You might have to override this setting with
settings.CITIES_LIGHT_INDEX_SEARCH_NAMES if using several databases for your project.

cities_light.settings.CITIES_LIGHT_APP_NAME
Modify it only if you want to define your custom cities models, that are inherited from abstract models of
this package. It must be equal to app name, where custom models are defined. For example, if they are in
geo/models.py, then set settings.CITIES_LIGHT_APP_NAME = ’geo’. Note: you can’t define one
custom model, you have to define all of cities_light models, even if you want to modify only one.

class cities_light.settings.ICountry
Country field indexes in geonames.

class cities_light.settings.IRegion
Region field indexes in geonames.

class cities_light.settings.ICity
City field indexes in geonames. Description of fields: http://download.geonames.org/export/dump/readme.txt

class cities_light.settings.IAlternate
Alternate names field indexes in geonames. Description of fields:
http://download.geonames.org/export/dump/readme.txt

4.2.2 Models

See source for details.

4.2.3 Admin

See source for details.

12 Chapter 4. Resources

http://download.geonames.org/export/dump/readme.txt
http://download.geonames.org/export/dump/readme.txt

django-cities-light Documentation, Release 3.2.0

4.3 cities_light.contrib

4.3.1 For django-ajax-selects

4.3.2 For djangorestframework

The contrib contains support for v1, v2 and v3 of django restframework.

Django REST framework 3

This contrib package defines list and detail endpoints for City, Region and Country. If rest_framework (v3) is installed,
all you have to do is add this url include:

url(r'^cities_light/api/', include('cities_light.contrib.restframework3')),

This will configure six endpoints:

^cities/$ [name='cities-light-api-city-list']
^cities/(?P<pk>[^/]+)/$ [name='cities-light-api-city-detail']
^countries/$ [name='cities-light-api-country-list']
^countries/(?P<pk>[^/]+)/$ [name='cities-light-api-country-detail']
^regions/$ [name='cities-light-api-region-list']
^regions/(?P<pk>[^/]+)/$ [name='cities-light-api-region-detail']

All list endpoints support search with a query parameter q:: /cities/?q=london

For Region and Country endpoints, the search will be within name_ascii field while for City it will search in
search_names field. HyperlinkedModelSerializer is used for these models and therefore every response object con-
tains url to self field and urls for related models. You can configure pagination using the standard rest_framework
pagination settings in your project settings.py.

4.3.3 Ideas for contributions

• templatetag to render a city’s map using some external service

• flag images, maybe with django-countryflags

• currencies

• generate po files when parsing alternate names

4.3. cities_light.contrib 13

django-cities-light Documentation, Release 3.2.0

14 Chapter 4. Resources

CHAPTER 5

FAQ

5.1 Recommended RDBMS

The recommended RDBMS is PostgreSQL, it’s faster, safer, saner, more robust and simpler than MySQL.

You can see on travis that build jobs with MySQL take twice as long as build jobs on PostgreSQL and SQLite.

5.2 MySQL errors with special characters, how to fix it ?

The cities_light command is continuously tested on travis-ci on all supported databases: if it works there then
it should work for you.

If you’re new to development in general, you might not be familiar with the concept of encodings and collations.
Unless you have a good reason, you must have utf-8 database tables. See MySQL documentation for details.

We’re pointing to MySQL documentations because PostgreSQL users probably know what UTF-8 is and won’t have
any problem with that.

5.3 Some data fail to import, how to skip them ?

GeoNames is not perfect and there might be some edge cases from time to time. We want the cities_light
management command to work for everybody so you should open an issue in GitHub if you get a crash from that
command.

However, we don’t want you to be blocked, so keep in mind that you can use Signals like
cities_light.city_items_pre_import, cities_light.region_items_pre_import,
cities_light.country_items_pre_import, to skip or fix items before they get inserted in the database
by the normal process.

15

http://travis-ci.org/yourlabs/django-cities-light
http://dev.mysql.com/doc/refman/5.0/en/charset-unicode.html
https://github.com/yourlabs/django-cities-light/issues?state=open

django-cities-light Documentation, Release 3.2.0

16 Chapter 5. FAQ

CHAPTER 6

Indices and tables

• genindex

• modindex

• search

17

django-cities-light Documentation, Release 3.2.0

18 Chapter 6. Indices and tables

Python Module Index

c
cities_light.exceptions, 10
cities_light.settings, 11
cities_light.signals, 9

19

django-cities-light Documentation, Release 3.2.0

20 Python Module Index

Index

C
cities_light.exceptions (module), 10
cities_light.settings (module), 11
cities_light.signals (module), 9
CITIES_LIGHT_APP_NAME (in module

cities_light.settings), 12
CitiesLightException, 10
city_items_post_import (in module cities_light.signals),

10
city_items_pre_import (in module cities_light.signals), 9
CITY_SOURCES (in module cities_light.settings), 12
country_items_post_import (in module

cities_light.signals), 10
country_items_pre_import (in module

cities_light.signals), 10
COUNTRY_SOURCES (in module cities_light.settings),

11

D
DATA_DIR (in module cities_light.settings), 12

I
IAlternate (class in cities_light.settings), 12
ICity (class in cities_light.settings), 12
ICountry (class in cities_light.settings), 12
INCLUDE_CITY_TYPES (in module

cities_light.settings), 11
INCLUDE_COUNTRIES (in module

cities_light.settings), 11
INDEX_SEARCH_NAMES (in module

cities_light.settings), 12
InvalidItems, 10
IRegion (class in cities_light.settings), 12

R
region_items_post_import (in module

cities_light.signals), 10
region_items_pre_import (in module cities_light.signals),

10

REGION_SOURCES (in module cities_light.settings),
12

S
SourceFileDoesNotExist, 10
SOURCES (in module cities_light.settings), 12

T
TRANSLATION_LANGUAGES (in module

cities_light.settings), 11
TRANSLATION_SOURCES (in module

cities_light.settings), 12

21

	Upgrade
	Installation
	Data update
	Resources
	Populating the database
	Simple django app
	cities_light.contrib

	FAQ
	Recommended RDBMS
	MySQL errors with special characters, how to fix it ?
	Some data fail to import, how to skip them ?

	Indices and tables
	Python Module Index

